



#### **RG 360**

### HYDROGEN BLENDING IN NATURAL GAS PIPELINES

Devin Zornizer Vice President - Construction

SocalGas A Sempra Energy utility®

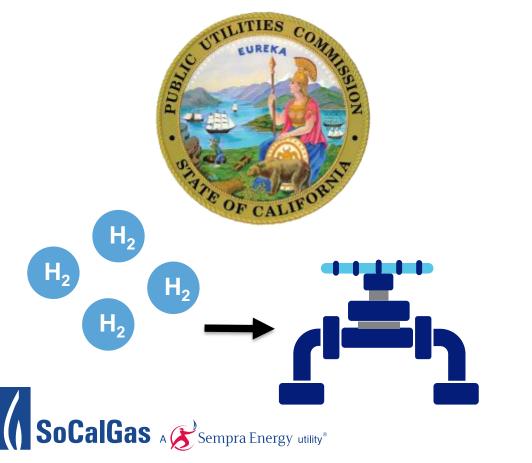
## SoCalGas Vision



CalGas 🗚 💦 Sempra Energy utility®

- » Build the cleanest, safest, most innovative energy company in America
- » Harness the potential of H2 to decarbonize the energy system and help California achieve its climate goals

# **Hydrogen Blending Policy**


- Emphasize SoCalGas' commitment to conducting the necessary work to <u>safely</u> introduce hydrogen into the Utility pipeline
- SoCalGas has presented and a filed a plan to identify hydrogen injection standard in near future as critical research is conducted and additional information is gathered to ensure safety and reliability

| In Progress                                                                    |                                                                                                                                                                                                                                         |                                                                                                                                                       |  |  |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ongoing research to<br>inform development of<br>hydrogen injection<br>standard | Near Term (1-3 years*)                                                                                                                                                                                                                  |                                                                                                                                                       |  |  |
|                                                                                | <ul> <li>Develop preliminary<br/>hydrogen injection<br/>standard, based on:</li> <li>Demonstration<br/>program</li> <li>Data collected from<br/>ongoing research</li> <li>Info from int'l pilots/<br/>research/collaboration</li> </ul> | <ul> <li>Long Term (3+ years*)</li> <li>Identify final hydrogen<br/>injection standard</li> <li>Submit regulatory<br/>filings for approval</li> </ul> |  |  |

\*As of 11/20/20 Application filing date



## H2 Policy Considerations



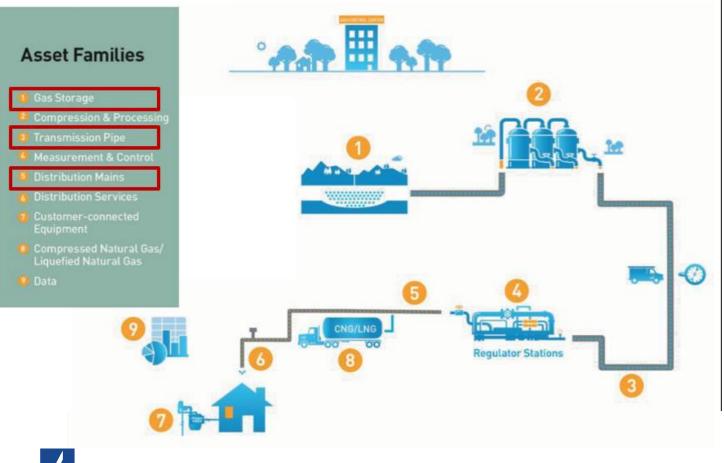
- » Narrow H2 definition in CPUC filing
- » SoCalGas open to working with H2 stakeholders on a broader definition
- » Utility procurement programs should include Green H2

## H2 Blending Focus Areas

#### Hydrogen Blending Safety

| <ul> <li>Leakage Rates and Leak Detection</li> <li>No concrete evidence of increased<br/>leak rate</li> <li>Current natural gas odorant still<br/>suitable when hydrogen is present</li> <li>Electrical equipment compatibility</li> </ul>                   | <ul> <li>Plastic and Steel compatibility</li> <li>AGS/UGS Assessment</li> <li>End User Considerations</li> <li>Feedstock Customers &amp; Gas Quality</li> <li>NGVs</li> </ul>                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>System Reliability</li> <li>Operations and system impacts (e.g. in-service welding)</li> <li>Facilities (Regulator, Pressure Limiting, and Measurement Stations)</li> <li>Compressors, turbines, engines</li> <li>Backbone System Supply</li> </ul> | <ul> <li>Progression, Additional Research on:</li> <li>Steel compatibility</li> <li>Underground Storage</li> <li>Measurement (e.g. gas<br/>chromatograph assessments are in<br/>progress)</li> <li>Expanded appliance testing<br/>(working directly with GTI on<br/>cooking equipment)</li> </ul> |
| SocalGas A Sempra Energy utility® 5                                                                                                                                                                                                                          | Glad                                                                                                                                                                                                                                                                                              |

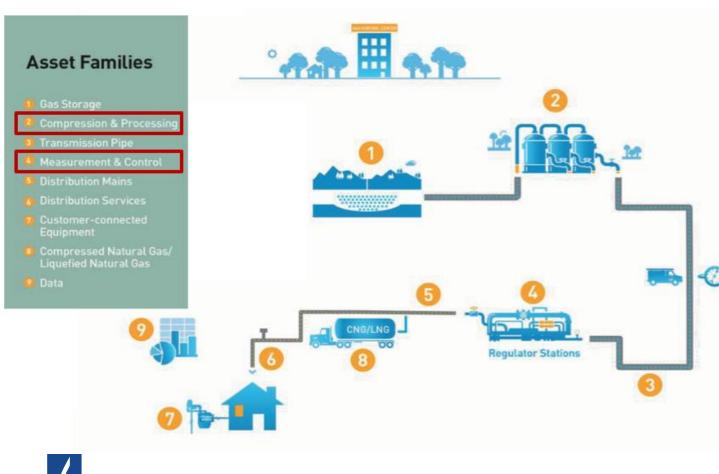
**System Integrity** 


Glad to be of service.

## **Research Action Plan Matrix**

- » Developed by SoCalGas, SDG&E, PG&E, and Southwest Gas to help identify, prioritize, and track knowledge gaps for hydrogen blending
- » Plan is built upon four categories:
  - System integrity
  - System and industrial equipment
  - Residential and commercial end use equipment
  - General



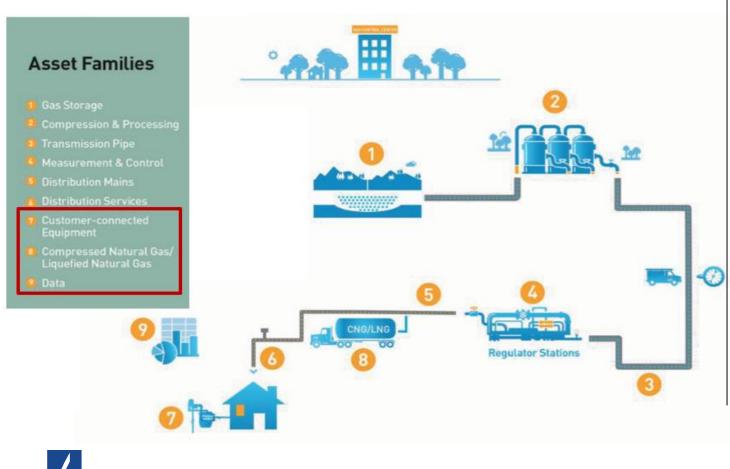

### **Research Action Plan Matrix**



CalGas 🗚 🏹 Sempra Energy utility®

- » Hydrogen embrittlement
- » In-service welding
- » Underground storage
- » Cathodic Protection
- » Hot Tie-Ins and gas handling procedures

### **Research Action Plan Matrix**




**SoCalGas** A Sempra Energy utility®

### » Compressors, engines, and turbines

- » Measurement and control
- » Sealants, gaskets, elastomers
- » Valves, flanges, fittings

### **Research Action Plan Matrix**



CalGas A 💦 Sempra Energy utility®

- » End-use: appliances, feedstock
- » NGVs
- » Hydrogen separation technology
- » Impacts to emissions
- » Combustion stability



» Renewables

- » H2 generation
- » Gas infrastructure
- » H2 vehicles
- » Synthetic fuel
- » Heating
- » Power generation

## **RD&D Efforts**



SoCalGas A Sempra Energy utility®

- » UCI injects P2G green hydrogen into campus power supply
- » JPL methane reforming technology development & commercialization
- » Fluor Honor Rancho P2G FEED Study
- » Brimstone Energy cogeneration project supporting low-cost/lowenergy hydrogen production
- » Hydrogen home

# H2 Blending Safety

### » Leakage rates

 Preliminary testing with UCI on low pressure steel distribution system with blends up to 10% showed no significant increase; further testing warranted

### » Leak detection

Evaluating currently deployed technologies with hydrogen blends of up to 20%

### » Odorant

- Vendors advise that hydrogen will not affect the stability of currently used NG odorant
- » Compatibility with electrical equipment
  - Hydrogen and NG fall under different hazardous groups; past research suggests hydrogen blends of up to 14% do not lead to a hazardous group reclassification



# H2 Blending Reliability

#### » In-service welding & hot tie-ins

 Supporting a Joint Industry Project to determine if hydrogen will increase risk of cracking in welds and if so, develop mitigative measures

#### » Regulator, pressure limiting, and measurement stations

Evaluating gas chromatographs able to detect hydrogen

#### » Compressors, turbines, engines

 Partnering with UCI and Capstone Turbine to demonstrate a hydrogen-tolerant microturbine-based CHP system

#### » Backbone system supply

 Hydrogen energy density is one-third of natural gas; energy delivery capacity of the pipeline system will be reduced with hydrogen

# H2 Blending Integrity

- » Polyethylene piping is generally compatible with hydrogen blends
- Steel pipelines and components are susceptible to hydrogen embrittlement
  - DNV GL hydrogen embrittlement testing
- » Further study on impact of hydrogen on fittings and components constructed of various polymers, metals, and elastomeric seals
  - NYSEARCH elastomers evaluation
- » Need to investigate compatibility of wellbore materials and chemical/biological reactions in storage facilities
- » End user considerations: testing appliances; planning meter, NGV engine and hydrogen separation technology evaluations; initiate feedstock customer outreach

## Hydrogen Blending Demonstration Program

Project 1 (2021)

SoCalGas A Sempra Energy utility®

#### Project 2 (2022)

#### Project 3 (2022)

| Project      | Blend hydrogen in<br><b>polyethylene plastic</b> , isolated<br>pressure district in SoCalGas<br>Territory                                                                                       | Blend hydrogen into <b>mixed</b><br><b>material</b> isolated distribution<br>network | Blend hydrogen in dedicated<br><b>steel</b> line to<br>commercial/industrial end<br>user                                    |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Blend Target | Start at 1% and go up to 20%<br>blend of Hydrogen                                                                                                                                               | 1-5% to start, consider 20%, or conversion to 100% long term                         | Determine with End User                                                                                                     |
| Technology   | Hydrogen injection skid,<br>residential appliances, leak<br>detection equipment (Solar<br>panels, electrolyzer)                                                                                 | Same as PE Plastic<br>Demonstration, Plus<br>Assessment of Mixed Material<br>Network | Same as PE Demonstration,<br>Plus Assessment of Steel and<br>of Transmission System                                         |
| Goal         | Establish Hydrogen Blending<br>Demonstration workflow including<br>data acquisition to set Integrity<br>Management approach; Set standard<br>for PE Plastic Sections of Distribution<br>Network | Set Standard For Mixed<br>Material Distribution<br>Network                           | Data acquisition on steel will<br>feed into Integrity<br>Management Analysis to set<br>Standard for Transmission<br>Network |

Glad to be of service.<sup>®</sup>

# **Biomethane OIR & Phase IV Ruling**

Phase 1:

Development of biomethane injection standards

0.1 % hydrogen trigger limit Phase 2: Biomethane pipeline interconnection incentives (\$40 million) Phase 3:

RG Interconnection Rule submitted November 2019

Interconnection Agreements filed May 2020 Phase 4:

Standards for injecting renewable hydrogen into gas pipelines

Implementation of SB1440



